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Abstract 

There is a vast number of analytical solutions of Ordinary and Partial 

Differential Equations (ODE and PDE) available in engineering literature, 

books, journals and teaching material, starting from the definition of the Partial 

Differential Equation (PDE) for thin plates formulated by Lagrange in 1811 /1/ 

see figure 1, the mathematical breakthroughs by Augustin-Louis Cauchy in 

early 1800s /2/ and Claude-Louis Navier /3/ using double Fourier series to 

solve the problem of a simply supported plate with different types of loads in 

1820. The focus in this paper is the analytical solution of rectangular plates. 

To solve these PDEs by hand calculations were the norm, limiting the practical 

use of these mathematical findings significantly. Today’s engineers and 

designers working in product development have vast computer resources 

available to them to implement these PDEs for better understanding of the 

behaviour of rectangular plates. The introduction of Formulation, Validation 

and Verification in product development has actualised the analytical solutions, 

as numerical solutions computed using FEA technology must be compared 

against “exact solutions” for verification.  

It is pertinent to ask the question: “What would the forefathers in Classic Solid 

Mechanics have done if they had our computer resources available to them?”  

A number of examples are made to show what effective use of state-of-the-art 

computing can do to revive the classical methods.  

1. Introduction 

Mathematicians working in the 19th century saw Classic Solid Mechanics as a 

rich source of unsolved problems to address. Many of the familiar names 

famous for their contributions in other domains of mathematics have also 

contributed in this domain /4/. In the 20th century engineers and 

mathematicians combined their interests in solving practical problems using 

the same approach, and with increased understanding of the underlying 

mathematical theory further refinements and improvements were made to 

create more advances PDEs. Even in the mid-1950s the tools available to solve 

these equations were limited to logarithm tables, slide rules and handheld 

calculators. 

The Classical Solid Mechanics literature is focused on defining the theory for 

PDEs, to describe the solution methods and outline the resulting equations for 



deformations and bending moments. Solving the PDE for Classical Plate 

Theory (CPT) for practical load cases and boundary conditions were laborious 

and time consuming, hence the literature is full of excellent theory, but few 

examples of solutions to them, making it nearly possible for practicing 

engineers to make use of the theory. 

 

 

 

 

or   

Where  

w is the transverse displacement 

q is the load on the plate expressed as q =f(x,y) 

D is the flexural rigidity of the plate 

Figure 1: The Classical Plate Theory (CPT) Partial Differential Equation (PDE) 

Figure 1 describes the bi-harmonic forth-order PDE governing the behaviour of 

thin rectangular plates known as the Classic Plate Theory (CPT). The PDE 

combines the three components that make up any PDE for rectangular plates:  

- Force Resultants-Stress relationships  - No shear-effect included 

- Stress-Strain relationships      - Hooke’s Law for isotropic materials 

- Strain-Displacement relationships     - Small deformations 

Together these choices for the formulation are known as the Kirchhoff-Love 

formulation for thin plates /5/ in the FEA context called thin-plate theory. 

 

The lack of effective calculation methods resulted in a narrowing of the 

practical use of the theory as shown in figure 2. Typically, from /6/: 

- Equation (3) shows the Classic Plate Theory PDE, which represents any 

rectangular plate according to Kirchhoff-Love thin plate theory.  

- Equation (4) shows the general solution found using the Navier’s method for 

Simply Supported Rectangular Plates using double Fourier series to represent 

the displacement and load, the general expression for the deflection w is given 

for any load type.  

- Equation (5) shows the expression of amn specialised for a uniformly 

distributed load over the entire surface of the plate.  

- Equation (6) shows the expression for the maximum deflection in the centre 

of any plate  

- Equation (7) shows the approximate value for the centre of a square plate. 
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Figure 2: From the general to the specific, showing diminishing  

generality, from /6/ 

 

This rapid transformation from the general solution to a particular case is 

concluded by the statement: “This is a rapidly converging series and 

satisfactory approximation is obtained by taking only the first term of the 

series, … This result is about 2½ per cent in error”.  

 

The example here is typical for many books on classical solid mechanics. Even 

modern treatises place scant emphasis on practical use of the often-elaborate 

theory developed in the early chapters. As the theory develops, the simplest 

cases are chosen, and most others are conveniently discarded. The examples 

are chosen to make it simple to calculate the deformation w, leaving the user to 

develop the mathematical expressions for all the other result components 

needed to solve the full breadth of cases. The reasons for this shortcoming 

include the need for long-winded manual calculations combined with the lack 

of effective means of carrying them out.  
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2. From manual calculations to the first computer results 

To solve the PDE using Fourier series is covered well in available literature. To 

develop the resulting equations, require substantial theoretical work and to 

produce non-dimension tables for the use by practicing engineers in their daily 

work even more manual effort. A few examples from the literature on plates 

and shells are included here to show the effort involved and the transition into 

the computer age for classical solid mechanics. 

Examples are chosen at random, there may be other more suitable ones: 

- Ernst Bittner: “Platten und Behalter” /7/ an impressive compendium of 

solutions to the Classical Plate Theory (CPT) equations with Navier’s and 

Lévy’s methods for a large number of boundary condition permutations and 

load types. The solutions to these equations are presented in 217 figures and 

284 tables as a tool for engineers working in reinforced concrete plate designs. 

- Rűdiger-Urban: KreisZylinderscalen (Circular Cylindrical Shells) was 

published in 1955 /8/ with the theoretical background for the 8th order PDE 

governing circular cylindrical shells and is a fantastic collection of non-

dimensional tables, all calculated and checked by a team of mathematicians at 

the Calculating Office at the Institute for Applied Mathematics at the Dresden 

Technical University, Germany. A number of parameters are systematically 

changed to tabulate the response for deformations and internal forces. The 

Preface ends: “May the tables win many friends. Dresden, in the autumn 

1955”. This was before the age of computing. 

The introduction of the early computers was welcomed by a new generation of 

engineers / mathematicians who could now solve complicated PDEs using 

algorithms written initially in machine-code to create new and more 

comprehensive tables. Examples include  

- Prof. Dr Tech Ivar Holand, professor at Department of Structural Mechanics 

at the Norwegian Institute of Technology in Trondheim, Norway, who used 

manual calculation methods to solve the 4th order PDE for cylindrical tanks 

with linearly variable thickness in the late 1950s. The solution of the PDE 

included Kelvin functions /9/ which requires substantial manual effort for the 

calculations. In 1960 he used Ferranti Mercury (production no: 001) computer 

to compute the deformations and bending moments for the PDEs, resulting in a 

number of tables with non-dimensional values for practical use in cylindrical  

tubes, water tank and arc-dam design /10/. 

- Prof. J. E. Gibson who started off with hand-held calculators for calculation 

and checking of the tables for “The Design of Cylindrical Shell Roofs” in his 

first edition in 1954 /11/ and added chapters on the programming of the 

Manchester Mark 1 computer in “autocode” to solve the same equations in the 

second edition from 1960 /12/. He further pioneered the use of the digital 

computer in “Computing in Structural Engineering” /13/ outlining the 

components that make up a modern computer like the Mercury and Atlas 

computers at the University of Manchester, the I.C.L. 1905 and the CDC 7600 

mainframes in London, UK. He explains further: “More recently the author has 



been actively involved in the use of a mini computer, the PAC 16, and an 

electronic calculator, the HP 35, both of which have influenced the 

presentation of this book”. He included a short course in FORTRAN 

(FORmula TRANslation) /14/ in the book together with the programs he used 

himself to solve the 8th order PDE for cylindrical shell roofs and other shell 

structures. J. E. Gibson included no tables, but any reader would be free to 

implement his simple but effective Fortran code. 

Since then the use of the analytical methods have faded somewhat, replaced by 

approximate methods based on alternative solution methods for the same 

PDEs, using finite element analysis (FEA) for plates and shells. 

Little has been done to revive the value of this material described in detail in 

the books listed and many others, including “Theory of Plate and Shells” by 

Stephen P. Timoshenko and S. Woinowsky-Krieger /15/ and “Stresses in 

Shells” by William Flűgge /16/ both classics found in the shelves of seasoned 

structural engineers. The reasons are obvious, as visualised in figure 3: 

 

 

 

 

 

 

 

 

Figure 3: The distance between the theory of CPT’s PDE and practical use, a big void for any 

engineer working in a project with budget and time boundaries 

Practical engineering problems are often very different from the theoretical 

material in the literature and bridging the gap between the theory and practice 

requires too much time and effort to be feasible. Non-dimensional tables are of 

limited or no use as they cover simple problems and list variables and their 

values different form the practical problems an engineer is grappling with.   
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Figure 4: A practical problem, beyond what is in the classical literature 

Here is the dilemma: the practical problem that an analyst wants answers to is 

not like the solutions that the books have partly solved. Typically, a plate may 

be rectangular, but it rests on elastic beams and concrete walls at the 

boundaries and have continuous connections to the plates beyond its edges as 

in figure 4.  

It is a reinforced concrete plate, hence should be modelled as a medium thick 

orthotropic plate where a uniformly distributed load is a particular load case. 

Other load cases for critical load may be combinations of patch loads and point 

loads where the combinations of loads on the plate and its adjoining plates 

have to be computed. The results from the analyses will subsequently be used 

for Serviceability Limit State (SLS) and Ultimate Limit State (ULS) 

calculations. 

Figure 5 shows the centre plate to be analysed with the idealisation offset. The 

behaviour of the plate is determined by the adjoining plates, the supporting 

beams and walls. The boundary conditions for the plate edges can be choses as 

indicated, for the edge with a supporting wall: Continuous Plate With 

Supported Edge and Free Rotation, and for the edges with a supporting beam: 

Elastically Built-in Edge. These terms are detailed in table 2. This case is not 

explicitly included in /7/ so a project engineer is encouraged to develop the 

solution for this particular problem and follow the well-documented and 

detailed structure of the many worked plate solutions.  



 

 

 

 

 

 

 

 

 

 

(Picture to come) 

 

 

 

Figure 5: a practical problem, the plates and their idealisations 

3. Formulation, Verification and Validation 

A rich source of analytical solutions is needed for comparison to the numerical 

solutions produced in modern computer systems for mathematical modelling. 

A thorough understanding of and practice in the use of Formulation, 

Verification and Validation technology is the basis for achieving the necessary 

accuracy in approximate simulations using FEA running commercial analysis 

codes /17/, /18/, /19/.  

All analysis problems can be assumed to be non-linear at least in part. The 

experienced analyst must make decisions on how the non-linear behaviour of 

his real-world problem can be reasonably represented as linear. Linear 

assumptions are used very successfully throughout industry together with 

dimensional reduction from 3D elasticity to 2D plates and shell formulations. 

There are a number of alternative PDEs for rectangular plates to choose from, 

it is not given up-front which is better at representing the real-world problem at 

hand. 
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4. Formulation 

The formulation of the mathematical model is a matter of choice among a large 

number of PDEs. The analyst must make a qualified choice of the 

representation of their problem at hand to ensure that the verification and 

validation processes end with approval. For rectangular plates, there are a vast 

number of alternative formulations, all making assumptions about the stresses 

and strains over the thickness of the plate to reduce the 3D elasticity problem to 

a two-dimensional one.  

Figure 6 shows a rectangular plate with a uniformly distributed load shown as a 

block above the plate and with the mid-plane marked. The dimensions for the 

plate is lx = 10000mm and ly = 15000mm. Three alternative thicknesses are 

shown  from top to bottom:  

- h = 2000, which gives a thickness to min(lx,ly) ratio of 1/5 

- h = 1000 which gives thickness to min(lx,ly) ratio of 1/10 

- h = 200 which gives thickness to min(lx,ly) ratio of 1/50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Alternative Formulations for rectangular plates 

Kirchhoff-Love plate theory has a validity range for deformations smaller than 

1/20 of the thickness of the plate.  

Föppl-von Kármán plate theory has a validity range for geometric non-linearity 

where the deformations are in the same range as the thickness of the plate. For 

larger deformations that also cause the material to behave beyond Hooke’s law, 

other non-linear theories apply. 
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Table 1: shows a separation of the alternative plate theories based on the thickness of the 

plate, developed from the table in /20/. 

 

The boundaries between the different theories and subsequent choice of PDEs 

are blurred. As an engineer, I have to probe: 

- when is a 3D elasticity problem representing a thick plate better represented 

as a moderately thick plate using the 2D simplification of Reissner-Mindlin 

formulation? 

- when does a moderately thin plate no longer exhibiting the effect of shear, 

hence is better represented using thin plate theory based on Kirchhoff-Love 

formulation? 

- when is a thin plate so thin that membrane forces become dominant and the 

Föppl-von Kármán’s formulation better represents the geometric non-linearity 

in a plate?  

There are also other plate bending theories in the literature where examples 

show better performance than the established formulations listed here /5/. 

Typically, in this paper all Formulations are given double names. For the purist 

this ignores the fact that there are differences between the Formulations 

developed by the two in the chosen name combination as well. As a 

consequence, the same underlying axioms for a Formulation may be given 

different names across the literature on plates. 

5. Verification 

The verification of the analyses is based on access to an exact solution to 

compare the approximate solution achieved using FEA. Typically, the criteria 

for verification use a measure of relative error to be within prescribed 

tolerances as shown in figure 7, taken from /17/. 



The uEX and uFE should not be influenced by each other, i.e., they should have 

different origins. The exact solution should ideally be an analytical solution to 

the problem studied. However, the number of analytical solutions is limited, 

and their formulation may not match the problem in hand. In general, an 

analytical solution doesn’t exist. Alternatively, a high-resolution FE analysis 

can be used as a substitute /19/. Measured data could be used if a suitable data 

set is available. 

To verify the accuracy of a chosen formulation, well established working 

practices for numerical analyses exist, like convergence studies using 

alternative densities in an FEA mesh /21/.  

 

 

Where 

- 𝜙𝑖ሺ𝑢𝐸𝑋ሻ    is the exact solution for a particular result of interest 

- 𝜙𝑖ሺ𝑢𝐹𝐸ሻ   is the approximate solution from a numerical analysis for a  

                   particular result of interest 

- i    is an index for the number of results of interest for consideration,  

       for example maximum displacement, temperature, stress, etc. 

-τi     is the relative error for the FE analysis compared with the EXact solution  

Figure 7: a measure of relative error for evaluating the accuracy of the simulations 

However, for analytical solution methods the functions representing the 

behaviour of a rectangular plate are continuous functions and the calculated 

result components are accurate for however dense point-grid is chosen.  

For the Navier’s and Lévy’s solution methods accuracy is a function of the 

Fourier series, i.e., how many terms should be included in the calculations to 

achieve sufficient accuracy and how fast do the expressions for the individual 

result component converge. This was a major concern before computers were 

used to calculate the results components. These days, this is no longer a 

problem. 

The requirement for an exact solution in the Verification process justifies any 

effort to revive the Classic Solid Mechanic theory, solution methods and 

practical solutions.  

The i in Figure 7 implies the existence of a number of results components that 

are of interest for understanding of the plate behaviour and for dimensioning in 

design. The CPT PDE creates a solution that is expressed as the transverse 

deformation of the plate, w as shown in equation 4. The bending moments and 

𝜙𝑖ሺ𝑢𝐸𝑋ሻ−𝜙𝑖ሺ𝑢𝐹𝐸ሻ
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 ≤ τ
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(8) 



shear forces are expressed as derivatives of w. The total number of result 

components is ten when the deformation is included. These can be computed 

and visualised for increased understanding of the behaviour of plates. More 

importantly, the different result components are used to define the boundary 

conditions for solving the CPT for a number of practical problems.  

Table 2 is taken from /7/ where the six alternative boundary conditions are 

subsequently used for the development of specific solutions for the CPT. Most 

other literature sources limit their exploration to the first three boundary 

conditions in this table: Simply Supported, Built-in and Free Edges and 

develop expressions and tables for any permutations of these.  

Practical engineering problems are often continuous plates with different kinds 

of support and their boundary conditions are more like the two at the bottom of 

the table: Continuous Plate with Supported Edge and Free Rotation, and 

Elastically Built-in Edge, see figures 5 and 6.  

 

In /6/ the last two boundary conditions are detailed further, combining the 

deformation and rotations with that of an elastic beam, combining Kirchhoff-

Love plate theory with the equivalent Euler-Bernoulli elastic beam theory 

including torsion, see /22/. The theory is not fully developed, and these 

boundary conditions are not used when the theory for continuous plates are 

subsequently developed, see /23/. There is more work to do. 

The Navier’s method can only be used for rectangular plate with all four edges 

simply supported.  This lack of versatility is eased by using the superposition 

principle where the effect of bending moment at either of the boundaries can be 

added to the Navier’s solution and elastically built in and fully built-in edges 

can be represented.  

The list of boundary conditions in table 2 requires the Lévy’s method of single 

Fourier series where two opposite edges are simply supported and the other 

two have any of the listed boundary conditions. Superposition of edge 

moments extends the range of plates that can be calculated using Lévy’s 

method. Each permutation of boundary conditions results in a particular 

expression for the displacement w, hence the comprehensive coverage of 

alternative plates in books like /7/.  

All ten result components derived from the w in equation 9 are used in one or 

several of the mathematical expressions for the boundary conditions listed in 

table 2. 

How does the representation of result components, load types and boundary 

conditions compare between analytical and numerical solution methods?  



The list of ten result components must also be output in numerical solution 

methods. However, not all of them are part of the standard output from FEA 

analyses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: The full set of boundary conditions for rectangular plates 

 

The alternative boundary conditions in table 2 must have a corresponding 

definition for numerical methods so direct comparisons can be made. In the 
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same vain, the set of load types must span the same range of alternatives for 

both analytical and numerical methods. 

For numerical methods like FEA convergence studies are a key to end up with 

reliable results. Literature on FEA methods and Formulation, Validation and 

Verification contains the theoretical base for convergence studies, but the 

technology for effective computations is lacking. There is work to do. 

 

 

 

 

 

 

 

Figure 8: A modern link between the established analytical theory  

and practical engineering problems 

6. Design of a modern computer system for solving PDEs 

With the computer technology and software development tools that we have 

available to us, we can compute any number of results and visualise them in 

any way we want when solving these equations in various ways. The following 

requirement specifications describe an office automation application in 

continuous expansion, later used to explore how results can be presented. 

Firstly, the requirement for a correct and complete problem definition:  

We need to define a parameterised model based on the CPT that includes all 

the variables that are included in the PDEs: 

 - the dimensions of the plate, i.e., the width, length and thickness 

- the material properties for Hooke’s Law: flexural rigidity D represented by 

Young’s modulus and Poisson’s ratio 

- the load types that can be represented using the Navier’s general solution 

- the plate thickness may wary in either X- or Y-direction, expressed as a 

function in thickness (h) or the flexural rigidity (D) of a plate. 

- the material properties in CPT assumes an isotropic material, but the PDE can 

be expanded to include an orthotropic material definition, still following 

Hooke’s Law. 

All of the variables are represented by symbols in the CPT equations. By 

varying all of these variables a user can explore what happens when the 

variables are specified across discrete values and continuous ranges. 
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The range of boundary conditions need to be expanded beyond Simply 

Supported on all four edges, to include all the possible cases that will satisfy 

the CPT equation, see table 2.  

 

To cover all these aspects of a rectangular plate, we need to expand the 

solution methods to include both Navier’s and Lévy’s methods and to make use 

of the superposition principle that are demonstrated so successfully in /6/ i.e., 

to combine the results for different load types with bending moments on the 

respective simply supported boundaries to represent alternative boundary 

conditions. All these aspects are described in part in /6/ all we need to do is to 

expand the theoretical material to fill the search space we want to cover. 
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Figure 9: The definition of a patch load for Navier’s solution method 



Figure 10: The discretised model for a patch load with moderate biases 

Secondly, the requirement for a conversion of the geometry into a discretized 

model:  

The geometry must be discretized into a number of points where the results are 

to be calculated and then used for visualisation as lines between the points. The 

natural choice is to define a regular grid of points for calculating the Result 

Components. For visualisation purposes lines are drawn parallel to the X- axis 

and Y-axis respectively, and the points can be used as nodes for elements in a 

numerical analysis.  

Each result component is represented as a grid of points with 3D coordinates 

where X- and Y-coordinates represent the position in the plate and the Z-

coordinate the calculated value at that point.  

The use of a regular grid allows us to create an identical finite element mesh 

that can be sent across to an FEA system, by choice LUSAS from FEA Ltd /24/ 

for a numerical analysis using four-noded thin shell elements. Both four-noded 

and eight-noded shell elements should be catered for. When we bring the node 

results back from the FEA analyses, we can display them in the same way as 

the analytical results and compare them like for like.  

The position of the grid points should be controlled by division numbers along 

the edges and should be varied in four alternative ways: 

- The number of lines in the grid can be set to any number using even distance 

between the lines in X- and Y-directions independently of each other.  

- The distance between the lines can be varied in one section in each direction 

allowing a uniform or a graded mesh across the plate. 

- The distance between the lines can be varied in two sections in each direction 

using two biases in both X- and Y-direction. The bias can be specified in two 

sections to enable a concentration of calculated points along the boundary on 

either side for the full load or a concentration anywhere in the plate. 

- The distance between lines can be varied in three sections in each direction 

using three biases in both X- and Y-direction. The bias can be specified in 

three sections, either side of the patch load and in the flow lines that go 

underneath it. This enables the concentration around and underneath a patch 

load and/or along the boundaries of a rectangular plate.  



The user should have a high-level control of how the bias should be 

distributed; the width of the flowlines is computed from the plate dimensions, 

the position of the patch load and the ratio of change. The position of the patch 

load can be parameterized, allowing the user to change position and size of the 

patch load in a sequence of analyses. The bias calculations should follow 

automatically. 

The concept of Results of Interest can be assigned to any of the lines in both X- 

and Y-directions. With careful choice of division numbers for a sequence of 

analyses the Result of Interest lines can be placed in the same position for all 

the analyses, making it possible to directly compare the results in a 

convergence study for both analytical and numerical analyses. Individual 

points can be designated as Results of Interest, allowing for example the 

midpoint to always be in focus, as well as the corners of a patch load, etc.  

Thirdly, the requirement for a user interface and the plotting of results: 

The search space defined in this way can be implemented in a computer 

environment we are all familiar with, Microsoft Office. To create the user 

interface where a user can specify the values and ranges for the variables, and 

to handle the amount of results produced, it has to be a relational database 

application using Access and Visual Basic for Applications (VBA). 

 

The results can be plotted as graphs in Excel, but that is too limiting. The 

alternative is to feed the results back to the LUSAS pre-processor as for display 

of the plate dimensions plus the points and curves representing the individual 

Result Component distributed across the plate. The added benefit is that the 

results can be presented as a model in the pre-processor, allowing the user to 

manipulate what to include in the presentation and in addition be able to rotate, 

scale, pan and zoom.  

When using the same discretization for both analytical and numerical analyses, 

nodal results can be compared like for like. A series of discretizations can be 

shared between the analytical and numerical analyses, enabling a user to study 

convergence rates for results from the two alternative sources. 

This is particularly useful for convergence studies of numerical results, to 

ensure that the analyses converge at the desired rate in both analytical and 

numerical results.  

Fourthly, the requirement for a range of mathematical models: 

The three relationships that combine to form the PDE for the CPT can be 

changed to well-known alternatives to form alternative PDEs. Figure 6 and 

table 1 show alternative Formulations across the thickness range.  

When alternative components for forming a PDE are brought together, 

different and more versatile PDEs are formulated. These may better represent 

the physical problem that the analysis should represent and produce more 

accurate results.  



7. A multi-dimensional search space 

All these possibilities combined form a multi-dimensional search space where 

a user may select which permutation of variables represent their problem most 

accurately. Each of the dimensions can be represented as a set of discrete 

variables or a continuous range. An algorithm can be designed to go through a 

set of cases in turn, producing results for both analytical and numerical 

analyses. To keep control of the enormous amount of results that can be 

produced, a relational database is necessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: system architecture of an engineering simulator as described 

8. What can we do today using modern computer technology? 

Today’s engineers have access to vast computer power for calculating 

problems with unlimited complexity and with unlimited means of visualisation 

of the results. Database technology holding the Results of Interest from 

hundreds of analyses will enable structural engineers to answer “What-if?” 

questions based on simulation results, analytical and numerical, comparing and 

extracting detailed information from long sequences of analyses using tools 

widely used in office automation, such as Pivot Tables /25/ and Analytics /26/.  

The technologies that will make a difference include: 

- Relational Databases and the tools used to create, manipulate and present the 

content of small (Microsoft Access) and large (SQL Server, Oracle, DB2, etc.) 
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databases. 

- Office Automation tools (Microsoft Office, etc.) widely used across all 

industries for creation and management of data; 

- Visualisation technology where results can be displayed as models in an 

interactive software environment; 

- This will enable the manipulation and creation of sequences of pictures, 

videos of stored results, interactive exploration of results across many analyses, 

extraction of results of interest ; 

- Software technology to run hundreds of analytical and numerical analyses 

spanning a multi-dimensional search space; 

- Computer hardware to run hundreds of analyses in reasonable clockwall time. 

- User interface technology where the software understands intent and can 

direct the user to information of importance based on high level user input; 

- User interface technology where parameters in a search space can be 

interactively controlled, the users setting fixed values and ranges, for example 

for shape dimensions, load positions and boundary conditions. 

- Artificial Intelligence technology to direct searches in multi-dimensional 

search spaces to find a group of solutions that meet criteria set up-front. 

- And there is more…, much more … 

To demonstrate some of the possibilities that we have available to us, a simple, 

but effective implementation of a rectangular plate with even thickness, all 

edges simply supported and with uniformly distributed load is used. These 

examples make use of the functionality of the Access database application 

detailed previously.  

9. An example of what can be done today 

Here is a paper presentation of some of the results that can be generated in a 

computer program outline in the above section.  

 

 

 

 

 

 

 

 

 

Lx = 10000 mm  
Ly = 20000 mm 
H = 300 mm 

Grid in X-direction: 10 
Grid in Y-direction: 20 
Fourier terms: 10 & 10 



 

Figure 12: A rectangular plate with a full uniform load and the discretized shape with the 

calculation points given 

The analysis is set up to simulate a reinforced concrete plate with dimensions 

given as Lx = 10000mm, Ly = 20000mm and thickness = 300mm. The 

analytical definition and the discretized models are shown in figure 12. 

The number of terms in the Fourier series is 10 for both x and y. Some of the 

results from the analysis are shown in figures 12 and 13. 

 

  

 

Figure 13: Deformation of the plate in figure 11shown as a grid of curves in X- and Y-

directions, top: all curves in the grid; bottom: a selected set of Results of Interest curves, 
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Figure 14: The bending moments Mxx, Mxy and Myy  

scaled equally for comparison for a/b ratio of 1/2 

All ten result components are calculated and can be displayed as models as 

shown in figure 13 and 14 for the bending moments. These plots are useful for 

understanding of the qualitative behaviour of rectangular plates. Additional 

output in terms of numerical results must complement the models for effective 

quantitative evaluations.  

 

However, plotting the result components as a grid of curves and surfaces on 

paper doesn’t give them justice, only when the user can work with the results 

as a model by interactively rotate, scale, pan and zoom will they come to life. 

This will be demonstrated in the presentation. 

10. From the first computer results to continuous display 

Modern computer technology can revive the classic material in a way never 

dreamed of by the originators. Not only to replicate what they did, i.e., 
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compute the same tables again, but to create results as shapes in an FEA pre-

processor for a user to select how the results should be presented and then view 

the model from any angle. A video sequence can be created for a set of related 

result models. These can be put together from the same analysis or from 

several analyses, making it possible to see how a plate behaves in a systematic 

variation of input data across a sequence of analyses. With a unified storage 

format for analytical and numerical results, it will be possible to combine them 

in the same video sequences, all being a replay of already stored data.  

In the Access office automation application specified here, the structure of the 

result model is identical for all the Result Components, the only difference 

between them is the Z-coordinate values. Hence, by feeding a series of point 

coordinate sets in succession into a shared structure for the model, any number 

of changes in the underlying data can be displayed in a live sequence. This way 

we can create a continuous change of the results, i.e., a live video as in 

ParaView /27/: 

- all 10 result components can be displayed in a sequence 

- variations in for example any of the bending moments can be shown for 

variation in a/b ratios, thickness, load-types, boundary conditions.  

- variation in response for a sequence of numerical results can be compared 

side-by-side with the analytical results, for example convergence studies 

- variations in response to plate thickness changes across the different 

Formulations 

 

The user interface in the FEA pre-processor is customized to allow roll forward 

and backward through the data sets, so a user can clearly view the changes that 

happens between the data sets again. The history of the sequences can be stored 

as a video sequence for later replay. 

 

Beyond this, we want to display live the data as they are created, a window into 

the calculation processes as they happen. This requires integration of analysis 

tools, database technology, graphics display and High-Performance Computing 

(HPC). The software used in the demonstrations is a step in the right direction. 

However, this is the first three rungs on a long ladder. The next rung must 

allow a user to display several streams of data on individual displays and to 

control the calculation process using a games controller.  

Rectangular plates modelled using CPT are just the start. The key question is: 

“What problem would you like to solve with this technology at your 

fingertips?”  

11. Summary 

The engineering content in this presentation may seem simple, but problem 

complexity is not the point of the presentation, rather than to explore the 

opportunities that open up when exploiting well-established computer 



technology to engineering analysis. The ideas outlined here are implemented in 

an experimental Access application and is “work in progress”. So far, it uses 

well-established computer hardware and software found on any desk in any 

engineering analysis company.  

Some examples are included in the paper and presentation, but many more 

examples can be shown to demonstrate how interactive visualisation of results 

can enhance the understanding of how any structure behave under load. The 

presentation of the material covered in this paper comes in four parts: 

- this paper that outlines the ideas behind the engineering workbench, stating 

with rectangular plates; 

- the PowerPoint presentation used at the conference presentation; 

- the live demonstration of how analysis results can be presented in an FEA 

pre-processor; 

- a library of videos that make the ideas described here come to life. 

The bi-harmonic forth-order CPT partial differential equation is one of many 

PDEs that can be revisited to create a comprehensive library of analytical 

solutions. The material exists in an incomplete form, it is a large jig-saw puzzle 

that needs to be put together in a systematic way and offered as a simulation 

workbench. A project to significantly expand the range of analytical solutions 

for use as the exact solution in Formulation, Verification and Validation is well 

overdue.  

The additional purpose for such a development is to meet the learning and 

teaching requirements found among members of the following groups:  

- practicing engineers in structural engineering,  

- lecturers at universities teaching the engineering students the plate and shell 

theory and everything beyond; 

- the new generation of computer games savvy youngsters who should be 

encouraged to choose a career in design and structural engineering. 

The engineering workbench will be a key recruitment tool for the new 

generation of youngsters to choose a career in mathematical modelling. They 

will be lost to other and more exciting careers if they cannot work with the 

computer tools they have grown up with and enjoy their time at work playing 

games called mathematical modelling. 

12. Conclusions 

We owe it to the originators of the underlying mathematics for Classical Solid 

Mechanics to demonstrate what they could have done themselves if they only 

had the same computer technology as we have. There are no limits to the 

opportunities available today to advance the understanding of mathematical 

models, i.e., this is a Blue-Sky Opportunity.  

What is explored here is what we currently can do in June 2019. However, 

computer technology is moving forward at an accelerating speed. Using 



computers the same way as in the 1960s and 1970s doesn’t measure up. We 

must use computers the way the computer game generation is accustomed to.  

We must move faster than in the last two decades to keep up with the pace of 

change, let alone catch up on the advances made. Established thinking and 

working practices must be replaced by new paradigms for shape representation 

/28/ and new software development in user interfaces, computer graphics and 

multi-computer job administration, in the use of relational databases, 

application scripting and most of all in exploiting the advances in High 

Performance Computing (HPC).  

As an example, the first Exa Floating Point Operations Per Second (FLOPS) 

computers are predicted available in 2021 /29/ computers that can do 

1,000,000,000,000,000,000 FLOPS. To exploit the enormous computer power 

soon available at affordable prices, the established practices of “ONE big 

analysis” have to be replaced by “MANY smaller analyses” in Formulation, 

Validation & Verification based working practices, combining analytical and 

numerical analyses. Scaling and tuning of the technology will in time create 

“MANY big analyses”. Many-core heterogeneous parallel computers will 

open up for parallel processing at an unimaginable scale, compressing the 

clock wall time so simulations that took weeks instead become interactive. 

What do you plan to do today so you are ready when Exa FLOPS 

machines arrive? 

I for one have ambitions in this respect: I want Pica FLOPS, or better, Exa 

FLOPS, computer power hanging off the tip of my games controller, with the 

software functionality to compute, capture and present the results coming out 

of the multi-simulations in real-time. Most of the computer technology is here 

already, when will software for mathematical modelling catch up? 
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