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Abstract 

The behaviour of quadrilateral and hexahedral meshes is controlled by patterns 

that have been hidden to end-users and software vendors in the CAD, FEA and 

CFD communities for decades. A study of their behaviour has uncovered a 

number of patterns. The mathemization of these have resulted in a 

mathematical representation of a super-set of meshes far beyond any known 

contemporary meshing algorithm. An ad hoc implementation has been replaced 

by a new mathematical theory for representation of shapes in software using 

Cellular Non-Manifold Boundary-Representation Solid Models (B-rep Solid 

Models), creating a mathematical continuum from Parameterized CAD to FEA 

results evaluation and back. 

The paper details the patterns and the mathematical representation of them in 

effective algorithm implementations. The potential in this discovery, inventions 

and innovations leads to practical solutions to problems that are holding the 

analysis community back.  

Pictures printed on paper are a totally inadequate way of representing the 

material covered in this paper. The presentation will put this right, allowing 

users to see video sequences and the 3D models in an FEA pre-processor.  

1. Introduction 

At the NAFEMS World Congress ’97 in Stuttgart, 9-11 April 1997 Dr Bruce 

E. MacNeal and Dr Richard H. MacNeal gave a presentation called “Future 

Issues – a Code Developer’s Perspective” where they stated: “The “holy 

grail” of automatic hexahedral meshing still eludes us. Automatic meshing 

technology will have a long growth phase.”, /1/. 

A lot of research and development efforts, resources and time have been spent 

on the search for the Holy Grail – Automatic Hexahedral Meshing – before and 

after the NAFEMS congress in 1997. So far, the software developers and the 

analysis community as a whole know a lot about what doesn’t work.  

The alternative approaches are exhausted and newcomers to the problem are 

encouraged to turn the stack of failed approaches over and start again, 

repeating the mistakes of others with the same outcome as before. 



Dislocation Meshing – A Credible Solution to Automatic Hexahedral 

Meshing 

© NAFEMS 2019 April 20 2019 Page 2 of 30 

Nothing significantly has happened in this domain for a decade or more, and 

everybody seems resigned to live with “second best” on a permanent basis.  

No one has actually asked the question “Somehow, there must be a better 

way, right?” 

Dislocation Meshing is a research effort completely detached from any other 

effort in the search for the Holy Grail. It is based on sound scientific practice of 

understanding the problem at hand before a solution is proposed.  

 

The objective of this research has been clear from the start:  

- to discover the patterns that control the behaviour of quadrilateral and 

hexahedral meshes. 

- to invent the mathematical formulation that can take a B-rep Solid Model as 

input and deliver a hexahedral mesh as the result.  

- to discover how the process can be controlled using high level Volume Mesh 

Controls to specify what goes on inside the cluster of cells.  

A long time was spent on understanding the behaviour of quadrilateral and 

hexahedral meshes until the patterns that control their behaviour emerged.  

The mathemization of these patterns resulted in a system of equations that 

describe the flow of quadrilateral elements in the interior of 2D regions and the 

flow of hexahedral elements in the interior of 3D solid models. These systems 

of equations can be hand-created or computer-generated each time, requiring 

substantial manual and computational effort. Each set of underdetermined 

equation systems has many solutions, and technology to evaluate the meshes 

and analysis results coming from them must be developed. 

2. The separation of geometry and topology 

Dislocation Meshing is a topological approach to quadrilateral and hexahedral 

meshing. The approach establishes the connectivity of the elements within the 

boundary of the shape and subsequently maps the connected element mesh into 

a geometric space. This is a “connectivity first – coordinates second” approach 

enabling a user to stretch and compress the geometry without losing the 

connectivity of the mesh once it is created. 

The approach described here expects the computer systems to hold a cluster of 

B-rep Solid Models as a logical unit. The technical term for these is Cellular 

Non-Manifold Boundary-Representation Solid Models, /2/, /3/. a mouthful any 

day of the year. For readability of the paper, the short form ‘B-rep Solid 

Model’ is used whenever the cellular non-manifold version is described. 
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3. The patterns that control the behaviour of quadrilateral and 

hexahedral meshes 

The patterns that control the behaviour of quadrilateral and hexahedral meshes 

are detailed in the following list. Examples are used to visualise the patterns, 

while accompanying text explains the consequence of the discovery of them. 

Design decisions are discussed to create an implementable approach that can 

be expressed in mathematical terms. 

Pattern #1: The behaviour of quadrilateral meshes are controlled by 

irregular vertices in the interior of the meshes 

The topology of the boundary of a quadrilateral mesh is called a face and 

consists of the vertices and edges that make up the external and internal edge 

loops. Any number of geometric forms may share the same topological face 

definition.  

A quadrilateral mesh may be created in a 2D plane or be embedded in a single 

or double curved surface standing in 3D space. The number of vertices in the 

boundary determines how the quadrilateral mesh can flow in the interior. There 

is a mathematical relationship between the number of vertices in the boundary 

and the minimum number of irregular vertices needed to create a well-formed 

quadrilateral mesh. Irregular vertices in a quadrilateral mesh are of two kinds: 

- three-way irregular vertices where three elements meet 

- five-way irregular vertices where five elements meet 

Four-way vertices where four elements meet are regular. 

The vertices in the boundary of a face will all have two edges meeting and are 

here called V2. For a face with no internal loops, the equation is the number of 

irregular vertices expressed as: 

D = V2 – 4        (1) 

Where 

D is the number of irregular vertices in  the face 

V2 is the number of vertices in the boundary of the face 

Examples are shown in figure 1 where a triangle, quadrilateral, pentagon, 

hexagon and heptagon are shown with their respective coarse quadrilateral 

carpets.  

- a triangular face has a D= -1, that is it needs a three-way irregular vertex, 

  called a negative irregular vertex, to form a quadrilateral mesh.  

- a quadrilateral face has a D= 0, that is it needs no irregular vertices to form a  

  quadrilateral mesh 
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Figure 1:  Faces with no internal loops, their coarse quadrilateral carpets and the 

number of irregular vertices shown 

- a pentagonal face has a D= + 1, that is it needs a five-way irregular vertex,  

  called a positive irregular vertex, to form a quadrilateral mesh 

- a hexagonal face has a D= + 2, that is it needs two positive irregular vertices  

  to form a quadrilateral mesh. There are 3 alternative structures  

- a heptagonal face has a D = + 3, that is it needs three positive irregular  

  vertices to form a quadrilateral mesh. There are 14 alternative structures. 

The irregular vertices can have any position in the faces controlled by the 

widths of the flow lines in the boundary and the internal flow lines, appearing 

in the hexagon for the first time. The three faces: the triangle, the quadrilateral 

and the pentagon form the 2D Kernels, from where any other tessellation can 

be built by combining these in all sorts of ways.  

The relationships between the edges and the flowlines crossing them can be 

expressed as an equation system in this format: 

 

 

Where 

A is an edge-edge opposite matrix for the face 

w is the width of a flow line parallel to an edge 

I is the identity matrix 

L is the length in number of elements for the edge, i.e., its division number 

Aw – I L = 0       (2) 



Dislocation Meshing – A Credible Solution to Automatic Hexahedral 

Meshing 

© NAFEMS 2019 April 20 2019 Page 5 of 30 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2:  The EE matrix and the corresponding underdetermined equation system for 

the triangle, quadrilateral and pentagon, the 2D Kernels 

The equation systems shown in Figure 2 are an underdetermined system which 

requires half of the unknowns to be specified so the equation system can be 

solved. This format is chosen so it is possible to describe a mesh in terms of its 

flow line widths only, its division numbers only or a combination of the two.  

The triangle, quadrilateral and pentagon have one or none irregular vertex as a 

minimum and finding a solution to the equation system is straight forward. For 

the hexagon and any polygon with more than five vertices in the boundary 

there is more than one equation system. The hexagon has two positive irregular 

vertices that can be positioned relative to each other in three different ways, 

here represented as pentagons: 

The hexagons in figure 3 use three alternative subdivisions into quadrilaterals 

and pentagons to separate the positive irregular vertices, each subdivision using 

two out of a set of three internal edges cutting across the face. This can be 

expressed in a shared equation system by including all the internal flow lines in 

the equation system.  

1   . 1 1  
2   1 . 1  
3   1 1 .   

      3            3 
1   1 . 1  W -   1 . .   L = 0 
2   1 1 .        . 1 .   
3   . 1 1        . . 1   

1    1 . 1  

2  1 . 1 . 

3  . 1 . 1  
4  1 . 1 .  

       4              4 
1   . 1 . 1  W -   1 . . .   L = 0 
2   1 . 1 .        . 1 . . 
3   . 1 . 1        . . 1 . 
4   1 . 1 .        . . . 1 

1   . 1 . . 1   
2   1 . 1 . .  
3   . 1 . 1 .   
4   . . 1 . 1   
5   1 . . 1 . 

        5                5 
1   . 1 . . 1  W -   1 . . . .   L = 0 
2   1 . 1 . .        . 1 . . .   
3   . 1 . 1 .        . . 1 . .   
4   . . 1 . 1        . . . 1 .   
5   1 . . 1 .        . . . . 1   
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Figure 3:  The three cases for the hexagon where the face can be subdivided into a 

carpet of quadrilaterals and pentagons in three different ways 

As the three alternative subdivisions share the set of internal edges, the three 

individual equation systems for a hexagon can be compacted to: 

 

 

 

 

 

Figure 4:  The set of underdetermined equation systems for the hexagon 

         6         2 
1   . 1 . . . 1 | 1 . .  W = L 
2   1 . 1 . . . | . 1 .  
3   . 1 . 1 . . | . . .  
4   . . 1 . 1 . | 1 . .  
5   . . . 1 . 1 | . 1 .  
6   1 . . . 1 . | . . .  

         6         2 
1   . 1 . . . 1 | 1 . .  W = L 
2   1 . 1 . . . | . . .  
3   . 1 . 1 . . | . . 1  
4   . . 1 . 1 . | 1 . .  
5   . . . 1 . 1 | . . .  
6   1 . . . 1 . | . . 1  

         6           2 
1   . 1 . . . 1 | . . .  W = L 
2   1 . 1 . . . | . 1 .  
3   . 1 . 1 . . | . . 1  
4   . . 1 . 1 . | . . .  
5   . . . 1 . 1 | . 1 .  
6   1 . . . 1 . | . . 1  

1   . 1 . . . 1   
2   1 . 1 . . .  
3   . 1 . 1 . .  
4   . . 1 . 1 .  
5   . . . 1 . 1 
6   1 . . . 1 . 

         6          3               6 
1   . 1 . . . 1 | 1 . .  W -   1 . . . . .  L = 0 
2   1 . 1 . . . | . 1 .        . 1 . . . .  
3   . 1 . 1 . . | . . 1        . . 1 . . .  
4   . . 1 . 1 . | 1 . .        . . . 1 . .  
5   . . . 1 . 1 | . 1 .        . . . . 1 .  
6   1 . . . 1 . | . . 1        . . . . . 1  
 

1                 1 1 .  
2                 1 . 1  
3                 . 1 1  
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The additional matrix below the internal flow lines in figure 4 keeps a track on 

which flow lines belong in a group, hence it is called a group matrix (G). The 

number of unknowns is now extended to 15, so more of them must be specified 

for the equation system to have a solution. Only two of the internal flow lines 

are used in each relative positioning of the irregular vertices in the hexagon. 

The number of equations is 6, the number of groups is 3 and the number of 

unknowns in each group is 6+2+6=14. 

The solutions are found by specifying enough of the external and internal 

widths for the flow lines, or two flow lines widths and all the division numbers, 

or … You get the drift.  

For meshing of a hexagon it would be natural to specify all the flow line widths 

and solve the equation system with respect to the division numbers. That 

means the user controls the positioning of the positive irregular vertices in the 

face and lets the algorithm find the corresponding division numbers.  

The traditional meshing technique for a hexagon where all division numbers 

are given as input requires further two unknowns to be specified. The 

traditional solution uses fixed patterns where the positions of the irregular 

vertices are built in, i.e., both internal flow line widths are fixed. There are 

three orientations of the pattern, often ignored when using fixed patterns.  

With this approach, all possible cases can be considered and all solutions are 

represented in one compact underdetermined equation system. A solution to 

the equation system will be a vector of flow line widths from where the 

division numbers are computed. Together they give the absolute positioning of 

the irregular vertices and uniquely define a particular mesh for the hexagon. 

All possible solutions for a hexagon can be described uniquely this way.  

The same principle is extended to the other faces with more vertices in the 

boundary, /4/.  

This set is a combination of all the Edge-Edge opposite matrices for a face with 

no internal loops. 

This form is chosen because it can represent all the ways a face with no 

internal loops can be subdivided into a set of 2D Kernels, and ultimately a 

Coarse Quadrilateral Carpet. The cases that are included so far are based on 

equation (1), establishing a mathematical relationship between the face 

topology and the number of irregular vertices it must have to create a Coarse 

Quadrilateral Carpet. Their presence is a Law of Nature. 

This set of irregular vertices is called the Fundamental Set.  
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The general format for the set of underdetermined equation systems for single 

faces becomes: 

 

 

 

 

 

Where 

Ae is the edge-edge opposite matrix for the external edges in the face 

Ai is the edge opposite matrix for the internal edges in the face 

We is the vector for widths for the external edges 

Wi is the vector for the widths for the internal edges 

G is the group matrix indicating which internal edges form a group 

I is the unity matrix (only ‘1’s on the diagonal and ‘0’s elsewhere) 

L is the vector of division numbers for all external edges 

Figure 5:  The general form of the underdetermined equation system for single faces 

It is clear that a quadrilateral mesh can have additional irregular vertices in it, 

and these appear in groups of two, a negative and a positive irregular vertex. 

These are independent of the topological characteristics of the face and can 

appear in any numbers in any position in the quadrilateral carpet. This set of 

irregular pairs of vertices is called the Auxiliary Set. 

Pattern #2: The behaviour of hexahedral meshes are controlled by 

irregular edges running through the meshes 

The key characteristics of hexahedral meshes are the presence of irregular 

edges throughout their interior. On the outside of a hexahedral mesh there are 

irregular nodes (three, five or more elements meeting at an irregular node, four 

meeting at a regular node) used as the start of irregular edges which stretch into 

the volume and emerge at another irregular node somewhere on another 

external face.  

A
e
 | A

i
         -  I    L   = 0 

w
e 
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G 



Dislocation Meshing – A Credible Solution to Automatic Hexahedral 

Meshing 

© NAFEMS 2019 April 20 2019 Page 9 of 30 

 

Figure 6:  A hexahedral mesh and the outline with irregular edge networks indicated 

 

The model in figure 6 has only single irregular edges as the shape is dominated 

by 2.5D parts. This is the case for a large number of shapes. The irregular 

edges are all five-way irregular edges, hence the plus signs.  

In more chunky 3D models, the irregular edge networks start at the exterior of 

the shape at an irregular vertex and go into the volume to interact with other 

irregular edges and come out again at a different external vertex.  

The polyhedron called a Dodecahedron (0-0-12) is used to show alternative 

irregular edge networks, all using the single positive irregular vertices in the 

boundary, one for each of the pentagons, i.e., the Fundamental Set, 12 in all. 

The different irregular edge networks are created by cutting through the shape 

with planar cuts, each cut creating further subdivision of the cells into smaller 

cells. From two cuts onwards, all cells are 3D Kernels. The Figures 7 and 8 

show the Coarse Hexahedral Cluster in each case and half the model is 

included to show how the irregular edges are gradually separated in a 

hexagonal cut.  
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Figure 7:  A Dodecahedron with progressive separation between the irregular edge 

networks 

 

No internal planar cuts 

A single planar cut 

Two planar cuts 

Three planar cuts 
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Figure 8:  A Dodecahedron with further progressive separation between the irregular 

edge networks 

- the first has no separation, i.e., this is the network for Mid-Point Sub Division 

(MPSD)  

- the second has one planar cut separating the network into two internal 

vertices with one connection between them 

- the third has two planar cuts separating the networks into four internal 

vertices with a loop connecting them 

- the fourth has three planar cuts through it creating two internal vertices with 

no connection between them 

- the fifth has four planar cuts through it creating three internal vertices, two 

are closely connected 

- the sixth and seventh have nine planar cuts through them, separating the 

irregular edges completely, leaving six independent edges through the volume. 

For this topology, nine cuts will create full separation. There are two 

alternative sets of irregular edge networks with full separation, using two 

alternative set of planar cuts. 

 

Four planar cuts 

Nine planar cuts 
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Figure 9:  The Dodecahedron is also a Pentagonal Truncated Trapezohedron with two 

alternative irregular edge networks 

The (0-0-12) topology has additionally two irregular edge networks created by 

connecting the top and bottom pentagons with a single irregular edge as shown 

in figure 9. This divides the cell into five equal sub-cells that have an irregular 

vertex each connected to each other in a loop. There are two cases, one left and 

one right. The other Truncated Trapezohedra show the same structure.  

Pictures 7, 8 and 9 include some of the alternative irregular edge networks for 

the Dodecahedron (also used as a Pentagonal Truncated Trapezohedron ). 

There are hundreds of them, determined by the number of flow sheets cutting 

through the shape, any one of nine, any two of nine, etc. All represent a 

particular structure for a class of hexahedral meshes for a particular face as the 

bottom face. Due to symmetry in the Dodecahedron, all these irregular edge 

networks can use any of the 12 faces as the bottom face. Each of them can be 

derived from the FF matrix. 
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Figure 10:  The NoName shape from the 3D Kernels (2-2-2) with both negative and 

positive irregular edges. 

Pattern #3: There are two kinds of irregular edges in a hexahedral mesh: 

The pattern discovered for 2D quadrilateral meshes extends to 3D hexahedral 

meshes, there are two different irregular edges in a hexahedral mesh: 

- three-way irregular edges where three element edges meet (red) 

- five-way irregular edges where five element edges meet (blue or black) 

The four-way edges are regular as they have four elements sharing the edge.  

Figure 10 shows the only two configurations for the irregular edges in (2-2-2), 

the first is the configuration where all edges meet in the middle (MPSD) and 

the second is the full separation case. The respective meshes are shown from 

two directions. All flow sheets have a width of 2. 

Figure 11 shows two of the full separations for the Quadrilateral Truncated 

Trapezohedron (0-2-8) with their respective meshes and analysis results from a 

linear static analysis. Here, all irregular edges have five elements meeting. 

The irregular edges with more than five elements meeting follow the same 

pattern as for irregular vertices in faces. Edges where six or more elements 

meet are combinations of positive irregular edges,  

- two positive irregular edges combine to a six-way irregular edge,  

- three positive irregular edges combine to a seven-way irregular edge and so 

on.  
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Figure 11:  The Quadrilateral Truncated Trapezohedron (0-2-8) with full separation of 

their four positive irregular edges 
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Pattern #4: There are two kinds of irregular edge networks.  

The first set is derived from the number of irregular vertices in the faces 

bounding the cell. This set of irregular edges must be present in the mesh as a 

Law of Nature, they cannot be avoided. This set of irregular edges is called the 

Fundamental Set. 

In a triangular face, a negative irregular edge will start at the negative irregular 

vertex, go into the mesh and interact with other irregular edges inside the mesh, 

both negative and positive. For a quadrilateral, there are no irregular vertices, 

hence no irregular edge to connect up. For a pentagonal face, a positive 

irregular edge will start at a positive irregular vertex, go into the mesh and 

interact with other irregular edges inside the mesh, both negative and positive 

and come out again somewhere.  

The irregular edges are positioned in the cells by controlling the width of each 

of the external and internal faces. In this way the mesh flow is determined by 

controlling the interior structure of a hexahedral mesh.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12:  The tetrahedron (4-0-0), an FF matrix representing it and  

the corresponding underdetermined equation system and the three internal flow sheets 

1   . 1 1 1  
2   1 . 1 1  
3   1 1 . 1   
4   1 1 1 .  

       4        3              6 
1   . . 1 1 ¦ . 1 1   W -   1.....   L = 0 
2   . 1 . 1 ¦ 1 . 1         .1....   
3   . 1 1 . ¦ 1 1 .         ..1...   
4   1 . . 1 ¦ 1 1 .         ...1..   
5   1 . 1 . ¦ 1 . 1         ....1.   
6   1 1 . . ¦ . 1 1         .....1   
 

              1 . .   
              . 1 .   
              . . 1   
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The irregular edges can form any number of irregular edge networks and the 

positioning of the irregular vertices and edges in these networks are controlled 

by the width of external and internal faces. The widths are part of the Volume 

Mesh Controls for positioning irregular edges and the interior vertices.  

The calculation of which internal faces are needed to create all the alternative 

separations that the irregular edge can take uses the FF matrix as the input and 

produces a set of underdetermined equation systems as output. This follows the 

same path as for quadrilateral carpets in 2D. An example illustrates this. 

The Tetrahedron is represented by an FF matrix and the corresponding compact 

underdetermined equation system. The G-matrix represent the three possible 

ways the tetrahedron can be subdivided into two prisms, each with their 

separate negative irregular edge. This is similar to the hexagon in 2D. 

 

 

Figure 13:  The irregular edge network for the Tetrahedron (4-0-0) with no separation 

and an MPSD mesh where all the external flow sheets have a width = 2 and the 

absent internal flow sheets widths are all 0 

 

Figure 14:  The irregular edge network for the Tetrahedron (4-0-0) with an internal flow 

sheet where all the external flow sheets have a width = 1 and the internal flow sheet a 

width = 2. 
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The same method is used for all polyhedra, to transform the FF matrix into a set 

of underdetermined equation systems that can be solved by specifying the 

widths of the flow sheets, the division numbers or a combination of these, /4/.  

The second set of irregular edge networks are created by combining a negative 

and positive irregular edge as a pair. These are independent of the 

characteristics of the cell exterior and any number of them can be added to the 

hexahedral mesh as long as they form structures that yield hexahedral meshes.  

These pairs are called the Auxiliary Set. 

       

Figure 15:  An example of pairs of irregular edge networks in a cube (0-6-0) 

together with its Coarse Hexahedral Cluster 

There are a vast number of alternative structures where pairs of negative and 

positive irregular edges interact with other pairs to form a hexahedral mesh. 

Any number of these structures can be added to the structure created using the 

Fundamental Set. Their composition, relative and absolute positioning are 

defined by additional Volume Mesh Controls. 

4. Solving the set of underdetermined equation systems in 3D 

The Meshing process consist of two stages: 

- to create a Coarse Hexahedral Cluster, by specifying “in or out”, 1 or 0, for 

all the internal flow sheets.  

- to create a hexahedral mesh in the Coarse Hexahedral Cluster by specifying 

the widths as a positive integer. 

The group definitions determine which internal flow sheets should be 

considered, if given the value ‘1’ it will be present and given the value ‘0’ it 

will be absent within the group. When using ‘0’, all groups containing this 

internal flowsheet are excluded. 
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The general form of the set of underdetermined equation systems in 3D is 

given as follows: 

 

 

 

 

 

Where 

Ae is the edge-face opposite matrix for the external faces in the polyhedron 

Ai is the edge to internal face opposite matrix for the internal faces in the  

            polyhedron 

We is the vector for widths for the external faces 

Wi is the vector for the widths for the internal faces 

G is the group matrix indicating which internal faces form a group 

I is the unity matrix (only ‘1’s on the diagonal and ‘0’s elsewhere) 

L is the vector of division numbers for all external edges 

Figure 16:  The general form of the set of underdetermined equation systems for a 

polyhedron 

All the external flow sheet must be present, but may have a width = 0. This will 

position the positive irregular edge in the boundary of the polyhedron, either in 

the face, along an edge or at the internal vertex in a vertex of the polyhedron. 

There are restrictions to what combination of external width=0 that can be 

used. Negative irregular edges cannot be positioned in the boundary of the 

shape.  

In the same way as for the 2D underdetermined equation systems, enough 

unknowns have to be specified to create a square equation system which can 

then be solved. A sequence of alternative meshes can be created by using a 

range of values for the fixed unknowns, controlling both the presence or 

absence for internal flow sheets and the values for the widths for all flow sheets 

in the mesh. A large number of alternative meshes can be created and 

compared. Alternative strategies for solving the set of underdetermined 

equation systems are described in more detail in /4/.  

A design decision: The Auxiliary Set cannot be controlled by the equation 

system created for the Fundamental Set. Hence, the Auxiliary Set is kept out of 

the first tessellation process from cell cluster to Coarse Hexahedral Cluster and 

introduced as part of the hex-in-hex meshing process instead. Meshing then 

becomes a choice of regular and irregular hex-in-hex meshing, i.e., an 

A
e
 | A

i
         -  I    L   = 0 

w
e 

 

w
i
 

G 



Dislocation Meshing – A Credible Solution to Automatic Hexahedral 

Meshing 

© NAFEMS 2019 April 20 2019 Page 19 of 30 

additional set of Volume Mesh Controls is used to position the irregular edge 

networks in the Auxiliary Set within a Coarse Hexahedral Cluster.  

5. The mathemization of these patterns 

The patterns that control the behaviour of quadrilateral meshes can be extended 

into 3D. Hexahedral meshes have the same topological characteristics and 

follow the same patterns as the quadrilateral meshes. The underdetermined 

equation system in 2D can be used in 3D, now the unknowns are still edges, 

but their lengths are derived from external and internal faces called flow sheets. 

The equation systems are a group of EF opposite adjacency matrices and their 

solution is expressed as a vector of the widths of each of the internal and 

external flow sheets. 

 

 

 

Figure 17:  The same mathematical representation can be used in both 2D and 3D 

 

Dislocation Meshing is unique among meshing technologies in the fact that the 

2D solution can be extended directly into 3D. 

So far, the set of underdetermined equation systems are developed for a single 

polyhedron at a time. Real objects are made up of several cells and the 

adjacency matrices must represent the assemblies of the individual polyhedra, 

the topological representation of the cells. In the same way the set of 

underdetermined equation systems for the individual cell must be assembled 

into a shared set of underdetermined equation systems for the whole object. 

The linear algebra for these operations follow the same path as every reader is 

familiar with: the building of a global stiffness matrix from a set of cells and 

their individual stiffness matrices. The stiffness matrix assembly process uses a 

set of cells that are defined as elements: triangular or quadrilateral in 2D and 

tetrahedral, hexahedral or pentahedral in 3D and the relationship between their 

local node numbers and the global numbering system. This is a particular case 

of shape assembly; the same principle can be followed for assembly of any 

combination of different topologies, for both the combined FF matrix and the 

combined set of underdetermined equation systems.  

The end result is a global representation of external and internal flow sheets 

that separate the irregular edge networks in all possible ways.  
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Dislocation Meshing can create thousands of meshes for a given engineering 

object: 

- firstly, thousands of classes of irregular edge networks that use external and 

internal flow sheets to tessellate the shape into a cluster of 3D Kernels and 

eventually a Coarse Hexahedral Cluster. This gives the relative positioning of 

the irregular edge networks. 

- secondly, each of the Coarse Hexahedral Clusters can be given a range of 

widths for each of the external and internal flow sheets. Each combination 

results in a specific mesh using regular hex-in-hex meshing algorithms 

- thirdly, any number of pairs of irregular edge networks from the Auxiliary Set 

can be added to the Coarse Hexahedral Cluster in an irregular hex-in-hex 

meshing algorithm.  

All of them can be described uniquely by the set of underdetermined equation 

systems and the solutions vectors to these equations. Here is a method that can 

describe a super-set of solutions that are all known to exist. 

 

This enables a user to create any number of different meshes, combining the 

two sets of irregular edge networks. The automatic hexahedral meshing process 

is no longer a question of “Can you hex mesh this shape, Y or N?”, but 

instead “Which mesh should I choose?”  

Unfortunately, the introduction of so many possibilities creates a new problem: 

How to find the “most suitable” mesh for a given engineering object? and 

“Why spend so much algorithmic effort to find the full set of irregular edge 

networks when 99.9% will be discarded anyway?” 

Experience will establish good algorithms to reduce the amount of options 

created in the first place. Geometric characteristics can be used at an early 

stage to identify where the irregular edge networks must be placed for a well-

formed mesh: 

- a majority of the irregular edges must be placed on the boundary of the shape 

to achieve well-formed meshes. Identifying “which goes where” early will 

immediately reduce the number of internal flow sheet groups and the size of 

the equation systems.  

- geometric characteristics on “chunkiness” can be used to position the 

irregular vertices in the volume at a point giving the best distribution of 

element shape quality scores across the adjacent elements. The outcome will be 

a list of flow line widths directly, then used as input to reduce the number of 

specified unknowns so the equation system can be solved. 

So far, we have described the discovery of the patterns in the behaviour of 

quadrilateral and hexahedral meshes and the invention of algorithms to embed 

these patterns, leading to a consistent and complete representation of Coarse 

Hexahedral Clusters from a well-defined set of shapes, the 3D Kernels. This is 

called the Meshing process. 
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To successively create a cluster of polyhedra that eventually consist of 3D 

Kernels, a new mathematical notation has been developed blending together B-

rep solid modelling and Graph Theory. The background for this is described in 

the following. 

6. Euler’s Polyhedral Formula - scalar representation of shapes 

Leonard Euler /5/ was a polymath in the 18th century contributing significantly 

to a number of areas in mathematics. Among structural engineers he is known 

for the formulas for buckling capacity of columns /6/, for solid modellers he is 

known for the Euler’s Polyhedron Formula /7/ that dates back to 1750: 

v – e + f = 2        (3) 

Where 

v  is the number of vertices in a closed polyhedron 

e  is the number of edges in a polyhedron 

f  is the number of faces in a polyhedron 

 

The formula relates the three components of the boundary of a topological 

structure, the vertices, edges and faces for a two-manifold topology. Any 

closed single B-rep Solid Model conforms to the formula. 

However, it is a scalar equation, counting how many of each, irrespective of 

their type or relationship to other components of the shape topology. 

7. Expansion of Euler’s Polyhedral Formula – vector representation of 

shapes 

Tessellation of solid models requires knowledge of what kind of face that is in 

the boundary: triangle, quadrilateral, pentagon and beyond and how many faces 

meet at a vertex, i.e., its valency. There will be two faces meeting at each edge, 

i.e., at this point we are dealing with two-manifolds. 

The expanded Euler’s Polyhedral Formula becomes: 

V3 + V4 + V5 + V6 + … - E + F3 + F4 + F5 + F6 + … = 2   (4) 

Where 

Vi  is a vertex with i number of edges meeting at it (i-valent vertex) 

E is an edge with two faces meeting at it (2-valent edge) 

Fi  is a face with i number of edges in the boundary (i-valent face) 

The Fundamental Set of irregular edges is always present in any hexahedral 

mesh. Well-formed hexahedral meshes have the necessary number of irregular 

edges and no more. The minimum is defined by the 2D Kernels, triangles, 

quadrilaterals and pentagons forming the boundary of polyhedra with 3-valent 



Dislocation Meshing – A Credible Solution to Automatic Hexahedral 

Meshing 

© NAFEMS 2019 April 20 2019 Page 22 of 30 

vertices only. The general form in equation (4) can therefore be specialised. 

 

The topological characteristics of these shapes are: 

   - 3-valent vertices 

   - 2-valent edges 

   - 3-, 4- and 5- valent faces 

The subset defined by introducing these definitions in equation (4) is 

represented as 

V3 - E + F3 + F4 + F5 = 2       (5) 

We can now express the vertices and edges as a function of faces this way: 

The number of V3 is three times the number of vertices in all the faces: 

3 V3 = 3F3 + 4F4 + 5F5       (6) 

The number of edges E is twice the number of edges in all the faces: 

2 E = 3F3 + 4F4 + 5F5        (7) 

By combining equations (6) and (7) in equation (5), we get: 

3 F3 + 2 F4 + 1 F5 = 12       (8) 

Equation (8) describes all polyhedra with 3-valent vertices, 2-valent edges and 

bound by only triangles, quadrilaterals and pentahedra. There are 19 solutions 

to this equation, but only 11 are actual polyhedra, the proof is included in /4/. 

The solutions are shown in table 1. These 11 polyhedra are called the 3D 

Kernels and are shown graphically in figure 18. 

The members of the 3D Kernels can be described as a vector of faces of 

different type, using the number of triangles, quadrilaterals and pentagons as a 

sequence. The short form chosen here uses these numbers with a hyphen 

between them, like (4-0-0) for a tetrahedron, (0-6-0) for a cube and (0-0-12) for 

a Dodecahedron, see figure 18.  
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Where 

# the sequence number for the solutions 

T number of Triangles in the boundary 

Q number of Quadrilaterals in the boundary 

P number of Pentagons in the boundary 

V, E and F as before 

Exists an x is placed in the row for each existing polyhedron 

Name is the established technical term for the polyhedron in question, or an 

explanation of what it is in terms of v, e and f. 

Table 1:  The 19 solutions to equation (8) with the actual 11 high-lighted 

The 3D Kernels include polyhedra that are recognised from elsewhere: 

- three of the five classic Platonic Solids are present, the tetrahedron, the 

hexahedron and the dodecahedron; 

- three Prisms, the triangular, the quadrilateral and pentagon prisms 

- three Truncated Trapezohedra, the triangular, the quadrilateral and the 

pentagonal. 

In addition, there are polyhedra that have no other affiliation 

All of these have their respective FF matrices and set of underdetermined 

equation systems, some with substantial G-matrices, /4/. 

Counting vertices, edges and faces of different valency will give the same 

results as the scalar Euler’s Polyhedral Formula.  

      #      T     Q      P          V     E     F    Exists   Name 

      1      4      0      0            4     6     4          x       Tetrahedron 

      2      3      1      1            5     9     6          - 

      3      3      0      3            6   12     8          - 

      4      2      3      0            5     9     6          x       Triangular Prism 

      5      2      2      2            6   12     8          x       NoName 

      6      2      1      4            7   15   10          - 

      7      2      0      6            8   18   12          x       Triangular Truncated Trapezohedron 

      8      1      4      1            6   12     8          - 

      9      1      3      3            7   15   10          x       Cube with a corner cut off 

     10     1      2      5            8   18   12          - 

     11     1      1      7            9   21   14          - 

     12     1      0      9          10   24   16          - 

     13     0      6      0            6   12     8          x       Cube, Hexahedron 

     14     0      5      2            7   15   10          x       Pentagonal Prism 

     15     0      4      4            8   18   12          x       Cube with two edges cut off 

     16     0      3      6            9   21   14          x       Cube with three edges cut off 

     17     0      2      8          10   24   16          x       Quadrilateral Truncated Trapezohedron 

     18     0      1     10         11   27   18          - 

     19     0      0     12         12   30   20          x       Pentagonal Truncated Trapezohedron 
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Figure 18:  The 11 polyhedra forming the 3D Kernels. 

8. Expansion of Euler’s Polyhedral Formula – matrix representation of 

shapes 

However, we need a better representation of a polyhedron so we can keep track 

of the connectivity in the polyhedron irrespectively of the faces in its boundary: 

- the connectivity in a vertex, what type of faces is connected to the vertex 

- the connectivity across the edges, what type of face is connected to the edge 

on either side.  

- the connectivity between faces, what type of face is adjacent across a 

particular edge.  

For this, we need to expand Euler’s Polyhedral Formula further.  

The relationships between the vertices, edges and faces in a polyhedron can be 

expressed as matrices that define the adjacency between them, for example the 

relationships between faces, i.e., the FF matrix. These matrices are known as 

adjacency matrices. The adjacency matrices can be derived from the vector 

version of the Euler’s Polyhedral Formula, /4 /. 

The added complexity of this expansion is that the sequencing of the instances 

in the boundary comes into play. Vertices, edges and faces must have a 

position in a sequence so they can get their own row and column.  

(4-0-0) (0-6-0) (2-3-0) (0-5-2) 

(2-2-2) (0-4-4) (1-3-3) (2-0-6)  

(0-3-6)  (0-2-8)  (0-0-12) 
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The relevant adjacency matrices for a Tetrahedron (4-0-0) will be used to make 

an important point. 

  

 

 

 

 

 

 

 

 

Figure 19:  A Tetrahedron with a naming sequence and four of the corresponding 

incidence matrices 

The adjacency matrices shown in Figure 19 can all be extracted from the FF 

matrix or created by interrogating the data structure holding the shape. 

However, these adjacency matrices relate to each other in an algorithmic way. 

The following relationships exist: 

          (9) 
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Further by extracting the FE
A matrix: 
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D is a diagonal matrix with the diagonal values equal to  
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These relationships between the adjacency matrices also applies to a cluster of 

cells, and equations (9), (10) and (11), allow the development of algorithms to 

create the Face-Face adjacency matrix when the Face-Vertex and Vertex-Edge 

matrices are known.  

The algorithm described above is simple and easy to implement in an FEA pre-

processor to alleviate the manual effort needed to create “meshable cells” by 

hand. The algorithm works on clusters of cells as in Cellular Non-Manifold B-

rep Solid Models.  

Both the vector expansion and matrix expansion of Euler’s Polyhedral Formula 

contains the scalar information of a polyhedron. This can be verified by 

counting the number of each entity instance as before. 

9. A mathematical continuum 

The adjacency matrix algorithm is also the core algorithm in the process of 

splitting a B-rep Solid Model into smaller and simpler polyhedra, examples of 

planar cut operators are shown in Figures 7, 8 and 9.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20:  The continuous subdivision process where the Tessellation process meets the 

Meshing process at the 3D Kernels. 
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The Topology Operators available to tessellate a shape can start from the 

original B-rep Solid Model and extract the topology information into the 

mathematical representation used to hold the adjacency relationships for the 

cluster of cells. A planned sequence of Tessellation Operators will reduce the 

initial topological complexity of the shape to a cluster of less complex 

topologies that eventually consists of the 3D Kernels. There are a number of 

different operators that can contribute to a tessellation into 3D Kernels and 

beyond, a Coarse Hexahedral Cluster, /8/. 

This is where the Tessellation process meets the Meshing process, creating a 

two-part continuous process of the subdivision process from the B-rep Solid 

Model to the Coarse Hexahedral Cluster as shown in figure 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21:  The Tessellate and Merge Operators together form a loop 

The Tessellation and Meshing processes create a well-defined set of 

topologies, resulting in a finite element mesh with well-defined element flows.  

The process can be reversed, i.e., a set of Merge Operators can identify the 

structure in a finite element mesh and separate the Fundamental Set and 

Auxiliary Set of irregular edge networks to create a Coarse Hexahedral Cluster 

and the 3D Kernels. Other Merge Operators can extract the larger topologies 

from a cluster of smaller ones and eventually end up with a B-rep Solid Model 

again, /10/. This is shown in principle in Figure 21. 
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10. Discussion 

The discovery of the significance of the irregular vertices in polygons and 

irregular edge networks in polyhedra opens up a new way of specifying 

quadrilateral and hexahedral meshes. A user can define the Volume Mesh 

Controls to position the irregular edges and internal vertices in the volume 

directly, and the external quadrilateral carpet and edge division numbers are 

only algorithm outputs.  

Dislocation Meshing is a super-set meshing technology, spanning out a subset 

of a large group of possible hexahedral meshes in a cluster of cells using both 

the Fundamental and the Auxiliary Sets of irregular edge networks. Within the 

complete space of alternatives, Dislocation Meshing is designed to focus on: 

- the subset that uses irregular edge networks defined by the 3D Kernels only.  

- the necessary number of irregular edges defined by the Fundamental Set. 

As a consequence, a large number of alternative irregular edge networks are 

excluded; mainly those with lower quality mesh flows and poorly shaped 

elements, often created by excessive use of the Auxiliary Set. In the remaining 

subset Dislocation Meshing can create a large number of hexahedral meshes 

focusing on well-formed mesh flows and well-formed elements, /4/.  

Other efforts in the domain of automatic hexahedral meshing can be measured 

by their effectiveness in creating any subset of these known solutions. Where 

these methods cannot create hexahedral meshes consistently (or not at all), the 

theory underpinning Dislocation Meshing can be used to explain why, /9/. 

11. Conclusion 

Dislocation Meshing is founded on well-established mathematical theories and 

expands these to a natural mathematical language for representation and 

manipulation of surface and solid models using Boundary-Representation Solid 

Model and Graph Theory notations. Dislocation Meshing is one of many 

applications of a general mathematical representation of shape, an application 

independent theory that is surprisingly versatile. /10/.  

The resulting algorithms for Dislocation Meshing can be implemented in any 

computer environment that uses B-rep Solid Model notation. Hence, it can fill 

the hole for hexahedral meshing in existing FEA pre-processors. And even 

better: Tessellation and Meshing can become solid modelling operations 

working directly on parameterised solid models, eliminating data transfer all 

together. Any irregular edge network and its corresponding Coarse Hexahedral 

Cluster can be used unchanged in a sequence of mesh-refinements based on h-

convergence for a verification study as part of a Verification and Validation 

process. 
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The Tessellation and Meshing strategies described here require High 

Performance Computing (HPC) support to be a practical tool. The speed by 

which sequences of FEA solver input files can be created requires effective 

HPC implementation of the solvers for the subsequent analyses. The harvesting 

of the results from large search spaces requires relational databases and HPC 

graphics.  

Dislocation Meshing is the missing link between the past and the future: 

- it fits in existing software architectures and can revive forgotten technologies 

like p- and hp-versions of FEA for accuracy and sub-structuring for reduced 

clock wall-time when solving large equation systems; 

- it is an enabling technology to fully exploit the speed of emerging computer 

technology, like Pica FLOPS machines, /11/, Exa FLOPS machines, /12/ and 

whatever comes next, /13/.  

What do you plan to do today so you are ready when Exa FLOPS 

machines arrive? 
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